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SUMMARY

There is a wealth of immunologic studies that have been
carried out in experimental and human schistosomiasis that
can be classified into three main areas: immunopathogenesis,
resistance to reinfection and diagnostics. It is clear that the
bulk of, if not all, morbidity due to human schistosomiasis
results from immune-response-based inflammation against
eggs lodged in the body, either as regulated chronic inflam-
mation or resulting in fibrotic lesions. However, the exact
nature of these responses, the antigens to which they are
mounted and the mechanisms of the critical regulatory
responses are still being sorted out. It is also becoming
apparent that protective immunity against schistosomula as
they develop into adult worms develops slowly and is has-
tened by the dying of adult worms, either naturally or when
they are killed by praziquantel. However, as with anti-egg
responses, the responsible immune mechanisms and inducing
antigens are not clearly established, nor are any potential
regulatory responses known. Finally, a wide variety of
immune markers, both cellular and humoral, can be used to
demonstrate exposure to schistosomes, and immunologic
measurement of schistosome antigens can be used to detect,
and thus diagnose, active infections. All three areas contrib-
ute to the public health response to human schistosome
infections.
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INTRODUCTION TO SCHISTOSOMIASIS

Schistosomiasis, or bilharzia, is a disease caused by trema-
todes of the genus Schistosoma (1) that afflicts at least
243 million people (2, 3). Adult male and female worms
mate and produce fertilized eggs in veins of their human
hosts, where they live for an average of between
3–10 years, with longevity records extending for several
decades (4, 5). The eggs are excreted into the environment
either in faeces or urine or are retained within the host
where they induce inflammation and then die. Eggs that
reach fresh water hatch and release free-living ciliated
miracidia, which, if they infect a suitable snail host then
reproduce asexually through mother and daughter spo-
rocysts, producing thousands of cercariae which are
released into the water and are infectious for humans.
Cercariae penetrate through the skin and over 5–7 weeks
migrate and mature to egg-producing adult male or female
worms. Mature eggs, whether excreted or retained in the
body, only live for 1–2 weeks. People can be infected by
three main species of schistosomes: Schistosoma haemato-
bium, S. mansoni and S. japonicum. Each species has a
restricted range of appropriate snail hosts, so their trans-
mission distribution is defined by their host snails habitat
range. Adult worms live within either the perivesicular
(S. haematobium) or mesenteric (S. mansoni, S. japonicum)
venules. Schistosomes cannot excrete waste products, but
rather regurgitate them into the blood stream. Some of
the vomitus products are antigenic and are the basis of
diagnostic assays (see below).
In areas endemic for schistosomiasis, in the absence of

intervention, it is primarily a chronic disease lasting dec-
ades. This results from people being repeatedly exposed to
cercariae and the longevity of adult worms. In these areas,
a childs first infection often occurs by age two or three
with the burden of infection increasing during the next
10 years as new worms successfully colonize the childs
blood vessels (6, 7). Typical age prevalence and age
intensity curves from all endemic areas show the highest
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prevalence, and intensities of infection are found in young
adolescents. After that, they either level off or more com-
monly decrease to much lower levels in adults. Transmis-
sion patterns in highly endemic areas commonly show that
60–80% of school-age children are infected, while 20–40%
of adults remain actively infected (8–10).

IMMUNOLOGICAL ASPECTS OF
SCHISTOSOMIASIS

The immune systems of infected hosts have several life
cycle stages of the parasite that it must confront: penetrat-
ing cercariae, migrating schistosomula, adult worms and
the eggs produced by adult worm pairs. All of these stages
express hundreds, if not thousands, of antigenic moieties
(11–13), many of which stimulate strong and easily
detected humoral and cellular immune responses. Some of
these responses continue to increase during chronic infec-
tion, and others are strongly down-regulated (14–17).
Three main topics emerge when looking at human immune
responses during schistosomiasis. (i) The most straight for-
ward concerns immunodiagnostics, that is, what immune
responses are mounted that can be used to determine
whether someone has been exposed to schistosomes or if
they have schistosomiasis? Many hundreds of immunodi-
agnostic assays have been reported and some of the more
recent findings will be discussed below. (ii) Another area
of immunology in schistosomiasis is that of resistance to
(re)infection and responses against extant schistosomes.
(iii) The third main aspect concerns immunopathogenesis
and its immunoregulation. This area focuses on responses
to eggs that are either exiting the body via the excreta or
are trapped in bodily tissues such as the liver or bladder/
urogenital wall. It is important to understand that because
of the endemic and chronic nature of schistosomiasis, all
three of these areas of immunologic research involve either
repeated or continuous exposure to schistosome antigens
over many years, thus implying ongoing changes due to
antigenic exposures and the maturation of the immune
responses to different levels of exposure to different
antigens.

BACKGROUND BASED ON EXPERIMENTAL
STUDIES

Much of our understanding of the human immune
responses to schistosomes has been facilitated by the avail-
ability of murine experimental infection models. In partic-
ular, infection of mice with S. mansoni exhibits many of
the characteristics of human infection and has helped
frame immunologic studies in people with schistosomiasis.
In contrast, experimental S. haematobium infections have

been less instructive as adult worms do not migrate to the
venous plexus and deposit eggs in the bladders of mice.
However, the recent development of an S. haematobium
egg injection model (18) has begun to yield insights into
the pathogenesis of this infection (19). S. japonicum read-
ily infects mice, but the challenges of working with the
Oncomelania intermediate host have historically resulted in
relatively fewer laboratories studying this species in experi-
mental models than those working with S. mansoni.
Initially, the host must contend with penetrating cerca-

riae in the skin and the subsequent larval stage, the schist-
osomula, as they migrate through the lungs, ending up in
the mesenteric or perivesicular veins as adults. This migra-
tory path and responses against migrating larvae and
immature worms have been studied extensively in mice
with the conclusion that most effective responses against
incoming parasites occur in the lungs (20). Nothing is
known about parasite migrations in humans, but they are
assumed to be similar and they end up with the same
result, adult worm pairs in specified locations. Adult
worms, residing in those preferred venous environments,
appear to be impervious to immune attack. Multiple
mechanisms are likely to be responsible for their long-term
survival in what amounts to a hostile (but impotent)
immune environment. Some of these may be due, in part,
in the schistosomes ability to continually regenerate its
outer tegument through unique somatic stem cells (21),
and perhaps their ability to masquerade through molecu-
lar mimicry (22) or by acquiring host antigens (23, 24).
Some aspects of their survival may also involve manipula-
tions of and by the hosts immune responses, such as iso-
typic shifts in antibody specificities (25, 26) and
immunoregulation. Effective chemotherapeutic treatment
of schistosomiasis does, however, depend on having estab-
lished immune mechanisms that can kill the worms if they
have undergone sufficient surface damage due to praziqu-
antel (PZQ), the primary drug used to treat schistosomia-
sis (27–29).
Mouse models have been used extensively to investigate

the protective immune response to schistosome infections,
primarily with S. mansoni as the infecting species. Both
antibodies and T cells are needed for maximal protection
(30). The highest levels of protection are afforded by expo-
sure to attenuated cercariae that die before maturity. A
single exposure to attenuated cercariae induces partial pro-
tection, primarily associated with production of IFN-c,
while antibody responses become important in the protec-
tion of animals multiply exposed attenuated parasites (31).
Attenuated cercarial vaccination is effective against invad-
ing larval parasites, but their susceptibility to immune
attack wanes as worms mature and become adults.
Whether the mechanism is a cytotoxic attack or simply
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death by delayed migration through the lungs has been
questioned. Treatment of infected mice with praziquantel
confers similar levels of resistance to reinfection if animals
are also treated with anti-IL-10 receptor antibodies during
treatment, suggesting that IL-10 ameliorates development
of protective mechanisms (32).
Success with vaccination using attenuated cercariae in

experimental animals led to attempts to identify individual
vaccine antigen candidates based on reactivity of cells or
sera from vaccinated mice. Both recombinant-protein- and
DNA-based vaccines generate responses that can be
enhanced by co-administration with cytokines or adju-
vants that promote a Th1-type immune profile. Unfortu-
nately, these vaccines have been less effective and less
reproducible than immunization using attenuated cerca-
riae. Nevertheless, this work provided the basis for the
two schistosomiasis vaccine candidates currently being
tested in humans (33, 34). Second generation vaccine can-
didates have focused more on generating immune
responses to molecules that play a functional role in
parasite homeostasis, such as membrane turnover, nutri-
ent uptake or neutralization of reactive oxygen species
(35–38). Vaccines in the latter category may even have
therapeutic activity by disrupting adult worm immune
evasion mechanisms and rendering them susceptible to
host effector mechanisms.
The eggs produced by adult worms in their venous loca-

tions are intended (from the worms perspective) to be car-
ried out of the body either by faeces or urine and released
into the environment. However, the venous blood flow car-
ries many of the eggs in the opposite direction or prevents
their easy escape. The eggs contain a wide variety of prote-
ases and other potentially toxic moieties, which once they
are lodged in the tissues, can lead to necrosis (39, 40). The
hosts defence against this tissue insult comes in the form
of granuloma formation, to wall off and contain the egg
and the proteolytic products it releases. The granulomas
themselves can be detrimental lesions, and to prevent them
from overwhelming the tissue sites or blocking venous
blood flow, immunomodulation of the anti-egg antigen
responses (granuloma formation) develops effectively in
mice (41) and most people upon the establishment of
chronic infections (42–44).
Key roles for the immune response in worm maturation

and granuloma formation have been demonstrated through
experimental S. mansoni infections of T-cell-deficient mice
(40, 45). During the initial stages of infection, mice display
a balanced or Th1-type immune response to parasite anti-
gens. However, once egg deposition begins around 6 weeks
of infection, a dramatic shift to a Th2-type response
ensues. Specific schistosome egg antigens interacting with
dendritic cells are responsible for this immunologic shift,

partially through the action of certain carbohydrate
epitopes (46). Unregulated production of the Th2 cytokine
IL-13 eventually leads to widespread liver fibrosis, the
functional cause of hepatosplenic disease in humans
(47, 48). However, depletion of Th2 responses, particularly
IL-4, results in tissue damage and host mortality due to
pro-inflammatory Th1-type responses (49, 50). Thus, Th2
responses also perform a host protective function, and
appropriate regulation minimizes overall host pathology.
Alternatively activated macrophages and IL-10 are part of
the regulatory feedback of Th2-type responses that limit
the initial granulomatous inflammation that peaks in size
and intensity at 8 weeks of S. mansoni infection (51, 52).
As the infection continues, these and other immunomodu-
latory mechanisms further regulate granuloma formation
such that newly deposited eggs at 12 or more weeks of
infection induce smaller granulomas and less fibrosis than
during the acute stage (53, 54). Failure to modulate the
granulomatous response results in a hypersplenomegaly
syndrome that shares many pathologic and immunologic
characteristics with human hepatosplenic disease, greater
fibrosis and shunting of worms and eggs to the lungs
(55, 56). Mechanisms of immunomodulation include IL-10,
T regulatory cells, B cells, antibodies, anti-idiotypic
responses and T cell anergy (57, 58).
Egg excretion from mice is also dependent on the

immune response, with T-cell-deficient mice demonstrat-
ing fewer faecal eggs (59). Recently, a predilection for
schistosome egg deposition in Peyers Patches, which stim-
ulated vascular remodelling and egg excretion, has been
demonstrated (60).

HUMAN IMMUNE RESPONSES DURING
SCHISTOSOMIASIS

When studying or reading about human immune responses
during schistosomiasis, it is critical to consider the multi-
ple facets of the host–parasite interface described above
that involve different parasite life cycle stages. These are
important distinctions for the immunologist, because they
are important discriminations made by the hosts immune
responses. Regardless of the endemic area in which studies
are carried out, there is an overriding differential pattern
of immune responses against worm-derived antigens vs.
egg-derived antigens (61). In most studies, this is seen as
early high-level responses to soluble egg antigens (SEA)
that then decrease as infections become chronic (42–44,
62–64). Responses to soluble worm antigenic preparations
(SWAP), in contrast, invariably rise during early infection
and continue to be expressed throughout continuing
chronic infections. This has long been true using these
crude antigenic mixtures and is being shown now to be
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true for individual antigenic moieties expressed by differ-
ent life cycle stages (65). It is also important to distinguish
the status of people being studied beyond just whether or
not they are currently harbouring schistosomes by consid-
ering how long they have been infected (66), whether their
mother was infected while they were in utero (67, 68), and
whether and how often they may have been treated for
their schistosomiasis with PZQ (69–72). All of these situa-
tions and probably many others contribute to their
immune status at the time they are being studied.
In addition, it should always be remembered that the

study of human immune responses in schistosomiasis is
almost exclusively based on the preformed circulating anti-
bodies or cytokines or the responsiveness of lymphoid
cells in the peripheral blood. These sources may or may
not be representative of what is occurring in the micro-im-
munoenvironment of either the granulomatous lesion or
against incoming schistosomula. Nevertheless, these are
the specimens available to investigators, except in rare
instances when spleens or other tissues can be obtained
either at surgery or autopsy. Regardless of these stipula-
tions, multiple investigators have successfully defined many
aspects of the human humoral and cellular immune
responses to schistosome antigens in relation to pathology,
resistance to reinfection and diagnostics.

IMMUNOLOGY OF MORBIDITY AND
REGULATION OF MORBIDITY IN HUMANS

As in experimental animal models, morbidity during
human schistosomiasis results from chronic immune stim-
ulation by schistosome eggs that are trapped in tissues
and subsequent granuloma formation and fibrosis (73,
74). The vast majority of the burden of disease due to
S. mansoni and S. japonicum, and possibly S. haematobi-
um, appears to be caused by chronic inflammation, result-
ing in subtle morbidities such as anaemia, growth
deficiencies, physical fatigue and diminished cognitive
development (75–79). The inciting insults of this chronic
inflammation are soluble egg antigens released from tis-
sue-trapped eggs (80). While normal liver enzyme patterns
are generally maintained during chronic schistosomiasis
unless severe pathology develops (81), indicators such as
increased levels of hepcidin imply that inflammatory pro-
cesses are at the heart of subtle morbidity due to these
granulomatous lesions (76, 82, 83). In S. haematobium
infections, the anaemia of chronic inflammation is
aggravated by the blood loss seen as gross and micro-
haematuria. Along with these examples of direct morbid-
ity, schistosome infections can have indirect effects such as
predisposing infected hosts to greater susceptibility to
other pathogens. For example, the friable sandy patches

seen in female genital schistosomiasis caused by S. hae-
matobium infections are associated with an increased risk
of HIV acquisition (84, 85).
The immune process of granuloma formation, left unim-

peded, would soon occupy vast amounts of tissue space,
eventually shutting down return blood flow back to the
heart through the portal system, creating portal hyperten-
sion, pulmonary hypertension and ultimately oesophageal
varices, resulting in death. Prior to regular treatment with
praziquantel of children and adults in high-risk occupa-
tions, this picture was seen in proportions of those
infected with either S. mansoni or S. japonicum varying
from 2 to 25% (86). The fact that it did not occur more
frequently is in part attributable to immunomodulation of
responses to SEA, as reflected in reduced lymphocyte pro-
liferation in patients that do not develop hepatospleno-
megaly (44). This phenomenon has been examined in
human schistosomiasis by multiple groups, resulting in the
consensus hypothesis that continuous exposure to SEA
leads to the induction of regulatory mechanisms that dam-
pen down granuloma formation, anti-IgE antibody pro-
duction, and SEA-induced lymphocyte proliferation and
cytokine production (44, 62, 87–89). A number of immu-
noregulatory mechanisms have been identified through
investigations using cells and antibodies from chronically
infected intestinal patients with subtle morbidity. These
include adherent, macrophage-like cells (90); immune
complexes (91); IL-10 (92); TGF-b (93); T regulatory cells
(16, 71); and idiotypic interactions (94). It is impossible to
ascribe an attributable fraction to each of these mecha-
nisms, because they are demonstrated in vitro and with
only correlations to states of morbidity. However, taken in
the aggregate, and in the face of repeated findings by mul-
tiple groups in multiple endemic areas, down-regulation of
SEA responses is occurring during chronic schistosomiasis
and contributes to the establishment and ability to main-
tain chronic infections over decades without the develop-
ment of hepatosplenomegaly by most infected individuals
(44, 86). In addition, immunogenetics contributes to the
ability of some people to better regulate (or not) their
immune responses to schistosome infections (95, 96).
The concept that active schistosomiasis during preg-

nancy might impart an altered immune status on the
offspring has been studied over a long span of time
(58, 97, 98). There is evidence that this form of immune
manipulation in utero actually occurs in humans because
newborns of mothers with schistosomiasis already express
IgM or and IgE antischistosome antibodies and have
increased percentages of mature, CD5- B cells in their cord
blood (68, 99). Also, it has long been known that their
cord blood mononuclear cells proliferate strongly in
response to SEA (but not Trypanosoma cruzi antigens,
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unless the mother also has Chagas disease) and idiotypes
on anti-SEA antibodies (67). In regard to the specificity of
these responses, the cord blood mononuclear cells of
babies born to mothers who have Chagas disease respond
to T. cruzi antigens, but not to SEA (67). While this anti-
gen and idiotypic sensitization occurs in utero, as do other
influences on B cells (99), the impact of such perinatal
influence is not known. It is hypothesized that it may
result in an early immunoregulation against SEA, allowing
the majority of children in an endemic area to establish
regulated, chronic infections (58, 100). Other perinatal
influences are noted in the article by Dr Alison Elliott in
this issue.
It should be remembered that each of these interesting

findings needs to be substantiated in various patient popu-
lations, and eventually mechanistic studies should be pur-
sued to establish how the various phenomena fit together
to provide the appropriately regulated responses that allow
both host and parasite to survive. It is essential that indi-
vidual findings be validated or compared based on differ-
ent patient populations, exposure patterns, stage of
infection, durations of infection and the like. It is hoped
that reviewers and editors understand this necessity of
having confirmatory evidence of any given finding or
mechanism in such a complex relationship. The publishing
of the first finding of high proportions of Treg in patients
with schistosomiasis mansoni serves as an example (71).
While interesting, it is critical that such findings be
repeated both in the same populations and in other popu-
lations (16). Once substantiated, such observations need to
then be studied functionally in well-characterized subjects
with different clinical forms or durations of infection as
well as in other endemic settings. New cell subtypes are
being defined almost constantly, diminishing the likelihood
that pathology will be easily attributable to a given cell
producing a given mediator in response to a given antigen.
Even whether the most relevant antigens are secreted,
located in membranes, or are somatic remains a topic of
debate. Perhaps recent advances in schistosome proteomics
will facilitate better definition of the critical antigens for
human immunopathology.

IMMUNOLOGY OF RESISTANCE TO
REINFECTION IN HUMANS

Whether a protective resistance to reinfection exists in
people has long been discussed (101), but several lines of
evidence now indicate that it does develop, although it
may take a long time (17, 102) and perhaps rarely results
in sterile immunity. A number of studies suggest that
worm death, occurring either naturally or upon treatment,
leads to the release of immunogens that stimulate

protective responses, which after a sufficient number of
occurrences are at a level to effectively react with antigens
expressed by susceptible incoming schistosomula (17, 25,
69, 70, 72, 103–106) or lead to a decrease in fecundity
(107). Despite the challenges of evaluating reinfection rates
in people who have different exposure histories, encounter
water bodies with differences in force of transmission and
can be quite distinct genetically, epidemiologic data in
endemic populations generally support age-associated
decreases in infection as a result of development of anti-
parasite immunity, as opposed to reduced water contact
(108). However, while children in endemic areas are usu-
ally more susceptible to infection and reinfection than
adults, this may not be entirely linked to histories of expo-
sure and infection (15, 109). Part of developing an under-
standing of resistance to infection or reinfection, and how
treatment may promote it, involves identifying immune
responses that correlate with protection.
Unlike mice that demonstrate resistance in association

with Th1-like responses, human immune responses that
have repeatedly been linked with resistance to schistosomi-
asis reinfection are more Th2-associated. The association
between parasite-specific IgE, eosinophils and resistance
to reinfection has been observed across infecting schisto-
some species and in a variety of epidemiologic settings (26,
110–115). Mechanistically, both high- and low-affinity IgE
receptors on eosinophils and B cells (or in soluble form),
respectively, are associated with protection against reinfec-
tion (70, 116, 117). In contrast, susceptibility to reinfection
has been associated with IgG4, which may serve as a
blocking antibody, inhibiting the action of IgE (111–115,
118). Interestingly, the propensity of children and adults
to produce IgG4 and IgE, respectively, matches their rela-
tive susceptibility to reinfection (119). Following treatment
of adults, adult worm-specific IgG4 levels decrease, while
worm-specific IgE is maintained at pretreatment levels or
increases. In children, who more readily become rein-
fected, treatment is less likely to increase the IgE/IgG4
ratio. Recently, certain S. mansoni adult worm-associated
tegumental-allergen-like (TAL) proteins have been charac-
terized as important potential targets of protective IgE
and reinfection-associated IgG4 (25, 120, 121).
Cytokine responses to schistosome antigens are also

altered by treatment. IL-4 and IL-5, cytokines associated
with stimulation of IgE and eosinophil production, respec-
tively, generally increased following praziquantel treatment
(122–127). Resistance to reinfection has been associated
with these responses to the tegument antigen paramyosin
in persons infected with S. japonicum, and soluble adult
worm antigen preparations in persons infected with
S. haematobium (14, 128). IFN-c production following
treatment is more commonly (although not exclusively)
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linked with susceptibility to reinfection, as is IL-10 (129,
130). Interestingly, IL-10 is associated with IgG4 produc-
tion (131), consistent with the observations that IgG4
responses are associated with susceptibility and the find-
ings in mice that blocking IL-10 receptors is necessary for
treatment to induce protection against reinfection (32). As
with human immune correlates of immunopathogenesis
and immunoregulation, critical antigens and immune cell
correlates of resistance to reinfection need confirmation
between different populations in a variety of epidemiologic
situations to substantiate the relevance of any given
response in host protection.

STATUS OF VACCINE CANDIDATES AND THE
POTENTIAL ROLE IN ELIMINATION

There have been two schistosome candidate vaccines that
have been produced by good manufacturing procedure
and entered Phase I safety and immunogenicity trials –

ShGST (Bilhvax) (33) and Sm14 (34). The results of the
Bihvax Phase I trial have been published, but those from
the Sm14 trail are being analysed at this time. Bilhvax has
also undergone Phase II and III trials in West Africa, and
those results are also currently being analysed. Thus far,
these candidates have not induced adverse reactions, but
have induced immune responses. Other candidates that are
in preclinical trials at various stages include tetraspanin-2
(132) and calpain (133) for S. mansoni and paramyosin
(134), triose-phosphate isomerase (135), tetraspanin (136)
and schistosome insulin receptor (137) for S. japonicum.
Many of the vaccines for S. japonicum are being developed
to help control the transmission contribution of zoonotic
host species.
There are many questions that need to be addressed as

research on schistosome candidate vaccines move forward
(138). The first, and perhaps most contentious, question
is, Do we need such a vaccine to control schistosomiasis?
The debate has been further fuelled by the World Health
Assembly Resolution 65.21 call to eliminate schistosomia-
sis. Perhaps the best answer to that is twofold: first, if we
had an effective vaccine, we would use it. It is clear that in
most endemic countries, mass drug administration with
PZQ will not be sufficient to eliminate schistosomiasis;
therefore, we need new tools to be used in combination
with MDA such as snail control, behavioural change,
water and sanitation. The second question might be, What
is the ideal Target Product Profile is for a vaccine to pro-
tect against acquisition of schistosomiasis, or in fact could
it be a vaccine that would simply reduce morbidity
through control of egg production? In addition to the fun-
damental questions about the need or type of vaccine,
there are other questions regarding how a vaccine should

or could be safely tested. Even once additional antigens
are ready for human testing, the design of clinical trials to
evaluate them will produce its own challenges (138). Cur-
rent experimental schistosomiasis vaccine candidates are
evaluated by their ability to reduce worm burdens upon
challenge infection and perfusion, but this approach can-
not be used in humans because it is currently impossible
to quantify human schistosome worm burdens. Egg output
is another possible measure of vaccine efficacy, but we do
not know the true correlation between quantitative egg
output and worm burdens, and furthermore, it is likely
not stable throughout infection. Challenge infections are
not acceptable in a situation where adverse events such as
transverse myelitis could occur prior to evaluation by egg
output. Similarly, testing a vaccine on large populations of
people in endemic areas when they could also be treated
with PZQ might be ethically challenging and contentious.
This is all ignoring the substantial cost investment needed
to get through clinical testing and regulatory requirements.
Nevertheless, the potential long-term role that an appro-
priate vaccine could play in the elimination of schistosomi-
asis, and the sustaining of that task makes continued
studies on the discovery and development of antischisto-
some vaccines a worthy goal.

IMMUNODIAGNOSTICS

The accepted diagnostic standard of schistosomiasis is evi-
dence of viable eggs in urine (S. haematobium), faeces
(S. japonicum, S. mansoni) or tissue biopsies. These micro-
scope-based assays are relatively insensitive, especially in
situations involving low level infections (139, 140). Molec-
ular techniques for schistosome DNA detection in faecal,
urine or blood specimens increase sensitivity, but are
expensive and still suffer somewhat from sampling limita-
tions (141, 142). Serologic assays have proven useful clini-
cally (143) for diagnosis by the detection of antibodies
against schistosomal antigens. This approach, with an
extremely wide variety of reported immunodiagnostic
assays, is particularly useful for symptomatic travellers or
for serosurveys. However, for people in areas endemic for
schistosomiasis, current serologic tests cannot discriminate
between active infection and past exposure, although some
isotypic assays can generally group active or inactive infec-
tions (119, 144, 145). Circulating schistosomal antigen
detection by monoclonal antibodies has been reported for
decades and has the advantage of detecting active infec-
tions in a semi-quantitative manner. There is now a point-
of-contact circulating cathodic antigen (POC-CCA) assay
commercially available for mapping of S. mansoni infec-
tions. This lateral flow cassette assay is performed on
urine (Rapid Medical Diagnostics, Pretoria, RSA) and
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appears more sensitive than the Kato-Katz assay for map-
ping of S. mansoni-endemic areas (140), allowing on-site
mapping of S. mansoni without stool collections. This will
provide an important tool for introduction of control pro-
grammes into new areas. However, more sensitive and spe-
cific immunodiagnostic tools will be needed for field
studies, vaccine and drug testing, elimination programmes,
and in actual clinical diagnostics. Again, these efforts may
be assisted by proteomic and metabolomic studies that
may identify specific antigens or biomarkers for sensitive
infection detection. Recent development of PCR diagnos-
tic techniques are a welcome addition, but these assays
still suffer from a sampling limitations of urine or stool,
whereas a more useful diagnostic would utilize serum or
dried blood spots that could be multiplexed for assays for
other infections. It also bears remembering that none of
the literature or assays available provides an actual num-
ber of worms with which someone is infected. We are,
instead, left with correlates of worm burden that are at
best estimates and have little or no basis in data from peo-
ple with active infections at different times after the estab-
lishment of their infections. This lack of a true gold
standard is an impediment to many activities and studies
on human schistosomiasis.

WHAT IS LEFT?

There is obviously much more information needed to
truly understand the complex relationships between
schistosomes and their human hosts. When discussing
these interactions, it is important to keep in mind
whether the topic is immunity against infection/reinfec-
tion or immunopathogenesis and to realize that there
are almost certainly multiple responses and regulatory
responses that play off against each other in support of
a semi-balanced chronic infection. It is also useful to
admit that the approaches and tools we have are not
ideal. We are essentially restricted to the use of periph-
eral blood as our window into immune responses that
are undoubtedly actually being played out in tissue
microenvironments. Furthermore, without the option to
infect and treat or to use manipulated parasites in con-
trolled studies, we are confined to correlations rather

than proofs. Finally, movement of S. mansoni into areas
traditionally dominated by S. haematobium and of
S. haematobium into areas endemic for S. mansoni com-
plicates the epidemiologic, immunologic and diagnostic
picture, especially with respect to the recent description
of interspecies hybridizations between different human
and animal schistosomes, which may alter the host–para-
site interactions in both the mammalian and molluscan
hosts (146, 147).
Still, there are many questions to be answered and care-

ful correlative studies between various immune responses
and well-documented cases or treated individuals will yield
critical answers. Some of the immunologic questions that
remain are obvious: What are the actual mechanisms of
killing of invading schistosomula? Are there regulatory
responses that hinder these mechanisms? How do adult
schistosomes survive in an immunologically active environ-
ment? What level of granuloma formation is required to
thwart the damaging effects of egg constituents and how
much granuloma formation is too much, resulting anaemia
of chronic inflammation or severe disease? What combina-
tion of regulatory mechanisms determines whether the
outcome is anaemia or hepatosplenic or urinary fibrosis?
Do the antischistosome immune responses induced by
being born of an infected mother establish regulatory or
protective status? Does having schistosomiasis effectively
down-regulate someones ability to respond appropriately
unrelated immunizations or co-infections? Does having
schistosomiasis effectively down-regulate someones ability
to respond inappropriately to other stimuli, such as aller-
gens or auto-immunogens? Appropriate studies of people
with schistosomiasis are yielding and will continue to yield
answers to these critical questions.
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